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Table 2 Influence of the volumetric radiation on
arc characteristics
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Fig. 4 Influence of uncertainties of the volumetric radia-
i the temperature profiles of a transpiration-cooled

Q1**»

tion on

Pr from Ref. 9. Case C: p, cp, h from Ref. 10; k, a, Pr from
Ref. 7; M from Ref. 6.

For the low-temperature range (T < 3,000°K), the gas
properties from Ref. 11 have been used. Since the peak
temperature is relatively low, the influence of the volumetric
radiation is almost negligible in this range. In addition, the
values of the electrical conductivity used for the calculations
are in much better agreement from author to author than
those of the thermal conductivity. Therefore, the spread of
the different calculated temperature profiles is caused mainly
by uncertainties of the thermal conductivities. The effect of
this uncertainty on the arc characteristics is demonstrated in
Table 1, which, contains calculated values of the electric field
strength, the electric current, the power input, the mass in-
jection rate through the porous wall, and the mass average
enthalpy for cases A, B, and C.

The influence of the not-well-known volumetric radiation
on the arc characteristics and the temperature profiles is evi-
dent from Fig. 4 and Table 2. The calculations are based on
the following gas properties. Case D: p, cp, h from Ref. 10;
k, (7, M from Ref. 6; Pr = 0. Case E: p, cp, h from Ref. 10;
k, cr, M from Ref. 6; Pr from Ref. 9. Case F: p, cp, h from
Ref. 10; k, <r, M from Ref. 6; Pr from Ref. 7.

In this case the peak temperature reached the value of
13,600°K and the temperature at the wall was 1,000°K.
Neglecting the volumetric radiation entirely or using the
values given in Ref. 7 leads to deviations in the temperature
profiles of up to 5000°K. The disagreement of the arc
characteristics is shown in Table 2.

From these examples which have been taken from a large
number of calculations, it is obvious that the uncertainties in
the plasma transport properties cause large uncertainties of
the temperature distributions and arc characteristics of a
transpiration-cooled arc. Because of this problem, a quanti-

Table 1 Influence of the thermal conductivity on
arc characteristics

E, /, El, m, H,
Case v/cm amp kw/cm g/cm2 sec kjoules/kg

A
B
C

4.25
5.37
5.39

36.5
53.0
59.8

0.155
0.285
0.322

0.01841
0.02669
0.02854

2687
3400
3595

Case v/cm amp
El, m, H,

kw/cm g/cm2 sec kjoules/kg
D
E
F

10.64
13.12
15.13

42.6
41.2
37.3

0.453
0.54
0.57

0.0531
0.0821
0.1009

5431
3835
3231

tative comparison of analytical and experimental results is
presently nearly impossible. Comparisons can be under-
taken only to demonstrate agreement of basic trends.
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Light Antiaircraft Projectile Ballistics

JOHN W. MILENSKI JR.*
Braddock, Dunn and McDonald Inc., El Paso, Texas

Nomenc! ature
A = reference area for drag coefficient
CD = drag coefficient
D = CD^PVZA = aerodynamic drag force
g = acceleration of gravity
m — pro jectile_ mass
SD = 2in/CDpA = aerodynamic penetration
I = time
v = projectile velocity
y = horizontal (downrange) coordinate
z = vertical (altitude) coordinate
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7 = flight-path angle
€ = 2mg/CDpvm

2A = projectile weight to initial drag force
ratio

p = atmospheric air density
f = SD/vm = projectile time constant

Subscript
( )m = initial condition at gun muzzle

Introduction

PROJECTILE ballistics occupy an important role when
evaluating the effectiveness of light caliber antiaircraft

guns employed against high-speed, low-altitude targets. In
particular, projectile attitude angle and gravity drop require
special attention. Attitude angle is important because it
must be known to determine the angle of obliquity at target
impact. Gravity drop is of concern because it is required
(together with other considerations) by many fire control
systems in order to generate superelevation angle.

Certain aspects of ballistics have recently been discussed
by Larrabee1 and Smith.2 Projectile deceleration was
treated by Larrabee, but no attempt was made to determine
analytical time solutions for projectile attitude angle and
gravity drop. Smith presented an approximate solution for
wind drift and discussed gravity drop, although in limited
detail.

Earlier work dealing with approximate methods applicable
to light antiaircraft projectile ballistics is presented by
McShane, Kelley, and Reno.3 Included among these
methods is one widely employed by ballisticians and originally
devised by Popoff.

The present Note represents a considerable extension of
the work by Larrabee and Smith in that it provides approxi-
mate time solutions to projectile velocity, attitude angle,
gravity drop, and downrange. Solutions are obtained and
expressed in such a manner that comparisons can readily be
made with those presented elsewhere.

Analysis

For well-designed spin stabilized projectiles, the trajectory
may be taken to lie in the plane of departure and the attitude
and flight-path angles may be treated interchangeably. Air
density can be considered essentially constant since the
altitudes of interest are less than a few hundred meters
above the gun muzzle.

From the geometry shown in Fig. 1, projectile velocity
and flight-path (attitude) equations of motion are:

m(dv/dl) = — mg siny — CD^PV^A (la)
mv(dy/dt) — —mg COST (lb)

The downrange and altitude kinematic equations are

dy/dl = v cosy (2a)
dz/dt = v siny (2b)

It is convenient to rewrite (1) and (2) in dimensionless
form. This can be achieved by first defining the following

Table 1 Trajectory variables, ym =

Exact solution

t,
sec

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

«,
m/sec

1050.0
847.8
710.9
612.1
537.4
479.0
432.1
393.7
361.6
334.4

7
deg y,m

1,
1.
0.
0.

-0.
-0.
-1.
-1.
-2.
-3.

.50
,20
.84
,41
,08
64

,25
,93
,68
.49

0.
470.
858.

1187.
1474.
1728.
1955.
2161.
2349.
2523.

.0
,7
.3
,9
,4
,0
3
4
8

,4

z,m

0.0
11.2
18.1
21.8
22.7
21.1
17.4
11.7
4.2

-5.1

1.5°

Approximate solution

v,
m/sec

1050.0
847.8
710.9
612.0
537.3
478.8
431.7
393.1
360.8
333.3

T,
deg

1.50
1.20
0.84
0.41

-0.08
-0.63
-1.25
-1.93
-2.68
-3.49

5>,m

0,
470.
858,

1187.
1474.
1728.
1955.
2161.
2350.
2523.

.0

.7

.3
,9
,4
0
4
5
0

,7

z,m

0.0
11.2
18.1
21.8
22.7
21.1
17 A
11.7
4.2

-5.1

TRAJECTORY

Fig. 1 Trajectory geometry.

nondimensional variables:

v = v/vm, y = D, t = I/T

where

= 2m/CDpA, f = SD/vm

vm is the projectile velocity at the gun muzzle, SD is Larra-
bee7 s aerodynamic penetration1 and f is the defined pro-
jectile time constant.

Introducing these dimensionless variables into (1) and (2)
and employing the sine of the flight-path angle as a de-
pendent variable yield

dv/dt = —e siny — v2

v(d smy/dt) = e(sin2y — 1)-

dy/dt = v(l - sin2y)1/2

dz/dt = v siny

(3a)

(3b)

(4a)

(4b)

The dimensionless parameter e appearing in (3) is the
ratio of projectile weight to initial drag force where the drag
force is based on an equivalent constant or average drag
coefficient. For modern high-speed, low-drag light anti-
aircraft projectiles, e is on the order of 2 or 3%. The pres-
ence of the small parameter e suggests that the dependent
variables be expanded as series in powers of e, e.g.,

0(e2) etc. (5)

Substituting series for v and siny into (3), equating like
coefficients of the parameter e, integrating the resultant re-
cursive equations, and taking into account the initial muzzle
conditions yield

/cos2y,smy = smym + e I ——

(6a)

0(e2) (6b)

Substituting series for y and z together with (6) into (4)
allows solutions for the downrange and altitude variables
to be found in a similar manner, although a slight increase
in algebraic manipulation is involved. These solutions
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Table 2 Trajectory variables, ym = 10.0° Table 3 Trajectory variables, ym = 20.0°

Exact solution Approximate solution

sec

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

v,
m/sec

1050.0
847.2
709.9
610.7
535.7
477.0
429.8
391.1
358.7
331.3

7,
deg

10.00
9.70
9.35
8.92
8.44
7.89
7.27
6.59
5.84
5.03

5>,m

0.
463.
845.
1170.
1452.
1703,
1927.
2130.
2316.
2488.

0
,7
,7
.4
.9
,0
,3
,7
,8
,4

z,m

0.0
80.6
144.8
197.1
240.3
276.2
306.0
330.8
351.1
367.5

m/se

1050.
847.
709.
610.
535.
476,
429.
390.

iC

0
2
9
6
6
.7
,4
5

357.9
330.,3

7,
deg

10.00
9.70
9.35
8.93
8.45
7.90
7.30
6.63
5.90
5.12

5>,m

0.
463.
845.
1170.
1452.
1703.
1927,
2130.
2317,
2488,

0
,7
,7'
5
,9
.0
,4
,9
,0
,7

z,m

0.0
80.6
144.8
197.1
240.3
276.2
306.1
330.9
351.2
367.6

Exact solution

i,
sec

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

v,
m/sec

1050.0
846.6
708.7
609.1
533.8
474.7
427.2
388.1
355.4
327.7

7,
deg

20.00
19.72
19.37
18.97
18.50
17.97
17.38
16.72
15.99
15.20

y,m

0.
442.
807.

1117.
1386.
1625.
1840.
2034.
2212.
2377,

0
5
0
0
8

,7
1

,7
8

,1

z,m

0.0
159.9
289.4
397.2
488.8
567.6
635.9
695.6
747.9
793.8

«,

Approximate solution

m/sec

1050.
846.
708.
609.
533.
474.
426.
387.
354.
326.

0
6
,7
0
6
5
8
6

,7
.7

7,
deg

20.00
19.72
19.37
18.98
18.52
18.01
17.43
16.80
16.12
15.37

y.m

0.
442.
807,

1117.
1386,
1625.
1840,
2034
2213,
2377

0
5

.0

.0

.8

.7

.2

.8

.0

.4

2,m

0.0
159.9
289.4
397.2
488.8
567.6
636.0
695.7
748.1
794.1

(assuming zero initial muzzle conditions) are

= COST*. ln(l 4- t) + e

a + o2 , i 2
6 2 3(1

z = sinyOT ln(l + t) + e

— — o + ^~

X

- ln(l + 0 0(<2)

6 t) -
1 (1 +

(i + O 0(e«)

(7b)

In terms of dimensionless quantities, the gravity drop is
defined as

- z(t,e) (8)

The first-order approximate solution to the gravity drop is
obtained from (7b)

A« = e (i + +

- I ] } (9)

It is noted that solutions to all variables under considera-
tion depend upon the initial flight-path angle. Although the
solutions have been expressed as series, the forms are such
that comparisons can be made with solutions obtained by
alternate methods or those given elsewhere.

For example, employing the Popoff oblique coordinate
method3 to the problem at hand and transforming the re-
sults back into rectangular coordinates allow the downrange
and altitude variables to be expressed as

y = cosyw ln(l + t)

ln(l + 0 + ! U + m(! + 0 -

(lOa)

(lOb)
It is noted that Eq. (10) agree with (7) to first order 0(e)

only for the special case of zero initial flight-path angle.
Gravity drop obtainable from (lOb) does not depend upon
initial flight-path angle. In addition, the Popoff method
does not allow for gravity coupling to manifest itself into the
downrange coordinate for nonzero initial flight-path angles.

Gravity drop given by Ref. 2 in terms of nomenclature
employed in this Note is

cdt = -
€A2
2 (11)

For dimensionless time t < 1, the terms ln(l + t) and
1/(1 + t) which appear in (9) can each be expanded as an
infinite series. Neglecting terms of higher order than two
and substituting the truncated series into (9) allows the re-

sultant to reduce to (11). Thus, the gravity drop as given
by Ref. 2 is valid to first order 0(e) only for some small
time t < 1. Serious errors can occur by using (11) for time
t> 1.

Gravity drop obtainable from (lOb) is somewhat more
accurate than that given by (11); however, it is still not
formally correct to first order 0(e) except for the special case
of zero initial flight-path angle.

Reference 2 also presents a time solution for velocity.
The solution expressed in terms of nomenclature employed
in this Note is

+ <) (12)

Velocity as given by (12) is simply the zeroth-order solu-
tion. This is easily seen by taking the parameter e in (6a) as
zero. The resultant then reduces to (12).

Numerical Results
A representative light antiaircraft projectile is the Oerlikon

20mm SUL shell.4 Characteristics of this projectile fired at
standard sea level conditions are

vm = 1050 m/sec, mg = 125.0 g, SD = 2203 m

Tables 1-3 list trajectory variables obtained by numerically
integrating (1) and (2) and evaluating the first-order ap-
proximate solutions as given by (6) and (7) after recasting
these equations into dimensional form. The approximate
solutions are in excellent agreement with the exact numerical
results as can be seen from Tables 1-3.

Conclusions

The basic differential equations governing motion of a
light antiaircraft projectile employed against low-altitude
targets have been reduced to dimensionless forms. These
forms allow approximate solutions to be obtained from an
expansion procedure in terms of the small parameter e. The
solutions are in excellent agreement with numerical results
and can also be used to estimate the order of accuracy of
existing solutions. The series solutions converge for any
finite time. It should be noted that the solutions do not
converge for infinite time because of the appearance of secular
terms; however, times of interest are finite. In general,
retention of first order 0(e) terms are usually sufficient for
analysis purposes.

The approach presented in this note can also be extended
to medium caliber antiaircraft projectile ballistics. Medium
caliber projectiles are commonly employed against higher-
altitude targets. Variation of air density with altitude and
variation of drag coefficient with Mach number can be
incorporated into the medium caliber projectile solutions in a
relatively straightforward manner.
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Entrance Configuration Effects on
Tube Flow in the Transition Regime

JAMES F. MARCHMAN III*
Virginia Polytechnic Institute, Blacksburg, Va.

CD =
D =
k =
L =
L/D =
m =
PI =
Pz =
R —

Nomenclature
discharge coefficient
tube diameter
ratio of specific heats
total tube length
tube length-to-diameter
mass flow rate
pressure upstream of the tube entrance
pressure downstream of the tube entrance
gas constant
Reynolds number based on tube diameter

TI = upstream temperature
Hi = upstream coefficient of viscosity

Introduction

OVER the past seventy years, experimental and theoreti-
cal investigations have been conducted on the flow of

rarefied gases in tubes and orifices.1"6 Most theoretical
investigations have assumed that the flow entered the tube
through an abrupt or square-edged entrance. However,
most experimental studies have involved tubes with rounded
or bell-mouthed entrances so as to avoid the problem of
entrance separation and vena-contracta at higher Reynolds
numbers. These experiments have usually specified the
tube entrance to be at some point downstream of the rounded
entrance in order to compare data with theories assuming
fully developed flow at the entrance in the viscous flow range.

In this Note, two recent sets of experimental data1'4 are
compared in order to examine the effect of entrance shape on
rarefied flow through tubes and their relation to the theory
of Clausing2 for free molecular tube flow. Clausing's theory
depends on the length-to-diameter ratio of the tube, pre-
senting the problem of choosing an effective tube length for
a tube with a bell-mouthed entrance.

The recent experimental investigations of Carley and Sme-
tana1 and Marchman4 both involved the flow of nitrogen gas
through short tubes in the transition regime. Both investi-
gations measured flow rates and upstream and downstream
pressures in this range under steady-state conditions and
presented data in terms of discharge coefficients,

CD = m/frDtp^k/Ryit/^Ti)1**]^ + IJ^^+D/2^-1)
and Reynolds number based on tube diameter, RCD = 4m/
irDjjii. In both studies flow rates were measured with high
accuracy volume displacement flowmeters and pressures with
McLeod gages, both of which are calibration standard in-
struments. All measurements were repeated at least 3 times
to insure a high degree of accuracy.

The smooth entrance tube1 had an entrance-to-exit plane
length of 6.22 cm, a constant diameter section downstream
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Fig. 1 Comparison of data.

of the entrance of 4.32 cm with a 1.15-cm diam. An effective
length-to-diameter ratio of 4.79 was assumed based on an
extrapolation of data to the free-molecule limit and com-
parison with the theory of Clausing. The square-edged
entrance tube had a 2.54 cm diam and was tested at L/D val-
ues from 2 to 10. The resulting data are presented in Fig.
1. The square-edged tube data are all for pressure ratios
of 100 whereas the bell-mouthed tube data are the best curve
through the recorded data from pressure ratios of 50 to in-
finity. A comparison of these curves is valid based on re-
cent studies1'4-6 which indicate little or no significant increase
in discharge coefficient at a given Reynolds number above a
pressure ratio of 20. All of the data shown agree with the
respective Clausing theory limits for tubes of the given
length-to-diameter ratios in the free-molecule limit.

It is noted that at Reynolds numbers from 1 to 30 the
bell-mouthed data correspond well with the square-edged
data for a length-to-diameter ratio of 6, indicating that the
effective length-to-diameter ratio should be nearer to the
maximum for this tube (5.42) rather than the value of 4.79
assumed. Below this range of Reynolds number, the
rounded entrance tube discharge coefficients exceed those
for the square-edge entrance tube, indicating a lower effective
L/D. Above this range, the smooth entrance data fall below
that for the abrupt entrance indicating a higher effective
L/D. While the closeness of the 2 sets of data demands a
cautious comparison, a simple analysis of these results would
indicate that as the flow approaches free-molecular condi-
tions, the assumption that the rounded entrance can be
neglected in computing an effective length becomes more
valid. This is indicated by the manner in which the data of
Ref. 1 fall remarkably close to those of Ref. 4 for an L/D of
6, while near the free-molecular limit, these data rise above
those for the square-edged tube to indicate that the effective
L/D of the smooth entrance tube has decreased. At the
limit, there is diminishing influence on the flow from mole-
cules reflecting from the wall and hence less retardation of
the flow due to the presence of the converging channel. The
major influence on the flow is the throat or final tube diameter
itself and not the diameter reduction at the entrance. The
entrance will always exert some influence on the flow, but as
inter-molecular collisions reduce in importance this effect
becomes smaller.

In the region above a Reynolds number of 30 the data for
the rounded entrance tube again departs from that of the
square-edged tube. The indications are that the flow sees
an effective tube length even greater than the actual straight
tube length. In this range of Reynolds numbers, the viscous
forces in the fluid are becoming significant. These viscous
effects tend to retard the flow rate in both tubes as is indi-
cated by a decrease in curve slope. However, in the bell-
mouth entrance, there is a longer effective wall entrance
length actually seen by the flow. This length would be more


